M. SC. BIOINFORMATICS SEM.-I (C.B.C.S.) (2013 COURSE) / ADVANCED DIPLOMA IN BIOINFORMATICS SEM.-I

(C.B.C.S.) (2013 COURSE) :WINTER - 2017 **SUBJECT: ESSENTIAL BIOMATHEMATICS**

10.00 AM TO11.30 AM Time: Day : Monday

W-2017-1010 Date : 06/11/2017 Max. Marks: 60

N.B.

- 1) Q.1 and Q.5 are COMPULSORY. Out of the remaining, attempt ANY TWO from each sections.
- 2) Answers to both the sections should be written in **SEPARATE** answer book.
- 3) Figures to the right indicate FULL marks.
- 4) Use of Non-Programmable scientific calculator is allowed.

SECTION - I

Answer the following: 0.1

(10)

- Evaluate $\lim_{x\to 2} \left(\frac{x-2}{x^2+x-6} \right)$
- Find equation of line through (2,-3) and making an angle of 135^0 with positive direction of x axis.
- Find $\frac{dy}{dx}$ if $y = x^e + e^x$.
- d) Find unit vector along $\vec{a} = 3\hat{i} 9\hat{j} + \sqrt{10}\hat{k}$
- e) What is order of reaction for the isomerization reaction $A \xrightarrow{K_1} B$ and $E + S \xrightarrow{K_1} E \cdot S$.
- **Q.2** Answer any **TWO** of the following:

(10)

- A(8,5), B(9, -7), C(-4, 2) and D(2,6) are the vertices of a quadrilateral ABCD. If P,Q, R and S are the midpoint of sides AB, BC, CD and DA respectively. Show that PQRS is a parallelogram using slopes.
- **b)** Evaluate:

i)
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 dx$$
 ii) $\int \left[(2x - 7)^5 + (7 - 2x)^5 \right] dx$

- Solve the following differential equation $(1+y^2) \tan^{-1} x \, dx + 2y(1+x^2) \, dy = 0$.
- Q.3 Answer any **TWO** of the following:

(10)

a) Verify that A(BC) = (AB) C

$$A = \begin{bmatrix} 2 & 4 & 3 \\ -1 & 3 & 2 \end{bmatrix} \text{ and } B \begin{bmatrix} 2 & -2 \\ 3 & 3 \\ -1 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

- b) Show that the vectors $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j} + 5\hat{k}$, and $\vec{c} = 16\hat{i} + 11\hat{j} + \hat{k}$ are mutually perpendicular.
- Find the Laplace transforms of the following functions:

i)
$$f(t) = \cos(t - 2\pi/3), f > 2\pi/3$$
$$= 0, f < 2\pi/3$$
ii)
$$f(t) = (t-1)^3, t > 1$$

ii)
$$f(t) = (t-1)^3$$
, $t > 1$
= 0, $t < 1$

Answer any **TWO** of the following: **Q.4**

(10)

- Application of enzyme kinetics in Biology. a)
- Applications of partial differential equation to Biology. b)
- Derive Michaelis Menten equation.

PTO

SECTION - II

Q.5 Answer the following: (10)

- Evaluate $\lim_{x\to 0} \left(\frac{3^x 2^x}{\tan x} \right)$.
- Find acute angle between the lines represented by $x^2 + 4xy + y^2 = 0$.
- Find focal distance of the point P(2, -5) on parabola $2y^2 = 25x$.
- Explain the key parameters of the Michaelis Menten equation.
 - i) Enzyme efficiency ii) Vmax.
- Find Laplace transform of $4e^{2t} + 5e^{-3t}$

Q.6 Answer any **TWO** of the following: (10)

- Find the value of k if 2x + y = 0 is one of line represented by a) $6x^2 + kxy + y^2 = 0.$
 - ii)
- Evaluate $\lim_{x\to 0} \frac{12^x 4^x 3^x + 1}{x \sin x}$. Find equation of circle concentric with the circle $x^2 + y^2 2x 6y 7 = 0$ and of the circumference 10π units. i) b)
 - ii) Find equation of parabola with focus at (-9,0) and directrix x = 9.
- Find the degree and order of the following differential equations c) i)

1)
$$y = 3\frac{d^2y}{dx^2} + 5\sqrt{1 - \left(\frac{dy}{dx}\right)^3}$$
.

$$2) y = x \frac{dy}{dx} + 2 \left(\frac{dy}{dx}\right)^{-2}.$$

3)
$$dy + \sqrt{1 + \frac{d^2y}{dx^2}} dx = 0.$$

ii) Find
$$\frac{dy}{dx}$$
 if $y = e^{\sin 3x} + (\sin 3x)^3$.

Answer any TWO of the following: **Q.7**

- a) Find $\overline{a} \cdot \overline{b}$ and interpret the result where, $\vec{a} = -3i + j - \hat{k}, \ \vec{b} = 2\hat{i} + 4\hat{j} - 2\hat{k}$
 - Find $\overline{a} \cdot \overline{b}$ and $\overline{a} \times \overline{b}$ where $\overline{a} = -3\hat{i} + 4\hat{j} 5\hat{k}$ and $\overline{b} = 4\hat{i} + 2\hat{j} \hat{k}$, ii)

(10)

- Solve $(xy^2 x)dx = (y + x^2y)dy$. b)
 - Find inverse of $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$.
- Find inverse $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 3 \\ 1 & -4 & -4 \end{bmatrix}$.

Q.8 Answer any TWO of the following: (10)

- a) What is significance of $\frac{kr}{kf}$ and $k_{cat}(S^{-1})$? i)
 - What is the catalytic efficiency? ii)
- Prove that the sum of two solution to homogeneous linear differential equation is again solution as is product of solution with any constant.
- Verify that if $u_1 \ u_2 \ ... \ u_k$ are solution of the common homogeneous linear equation L[u]=0 then linear combination or super position $u=c_1u_1+\ldots+c_ku_k$ is the solution for any choice of the constants c_1, \ldots, c_k