M. SC. BIOINFORMATICS SEM.-II (C.B.C.S.) (2013 COURSE) : WINTER - 2017

SUBJECT: STRUCTURAL BIOLOGY & MOLECULAR MODELLING

Day **Thursday** Time: 10.00 AM TO 01.00 PM 02/11/2017 Date Max. Marks: 60 W-2017-1012 N.B.: Q.No.1 and Q.No.5 are COMPULSORY. Out of the remaining questions 1) attempt ANY TWO questions from each section. 2) Answers to both the sections should be written in **SEPARATE** answer books. 3) Figures to the right indicate FULL marks. SECTION - I **Q.1** Explain the following terms: [10] Molecular database a) b) Rigid docking c) De-novo drug design d) Independent variable e) COMPASS Sketch the chemical structure of following amino acids: Q.2 a) [02] i) Proline ii) Serine iii) Tyrosine iv) Arginine. b) Explain the GOR algorithm for protein structure prediction [04] OR Differentiate between tertiary and quaternary protein structure. b) How can you measure the accuracy of prediction of protein molecule [04] c) What are the differences between similarity and identity? [02] Q.3 a) b) Explain detailed algorithm used in PHYRE for protein structure prediction. [04] Explain computational approach in fold recognition of protein molecule. [04] c) OR Explain importance and role of template selection in Homology modelling. **Q.4** a) Explain the importance of protein structure comparison. [02]Explain algorithm FSSP. [04] b) OR b) How DALI is used in comparison to protein structures. c) How the macro molecular databases are important for structure comparison? [04] P.T.O.

SECTION - II

Q.5	a)	Show with the diagrams: i) Hydrogen bonds ii) Ionic bonds iii) Van der Waal's interactions iv) Overlapping bond v) Hydrophobic interactions	[05]
	b)	Explain the following terms with example (databases and tools): i) Chemical substance databases ii) SAR	[05]
Q.6	a)	Define force field.	[02]
	b)	Explain Newton-Raphson energy minimization algorithm.	[04]
	c)	Differentiate between quantum mechanics and molecular mechanics.	[04]
		OR	
	c)	Draw the potential energy surface graph for H ₂ O molecule.	
Q. 7	a)	Write a short note on ADMET.	[02]
	b)	Describe Conjugate gradient algorithm in molecular optimization.	[04]
		OR	
	b)	Explain importance of molecular optimization.	
	c)	Explain energy minimization method using Simplex approach.	[04]
Q.8	a)	Define long range interactions with example.	[02]
	b)	Describe Newtonian molecular dynamics method.	[04]
	c)	Write short note on radial distribution function.	[04]
		OR	
	c)	Write short note on Self diffusion coefficient.	
		* * * *	